5,645 research outputs found

    Quantisation of 2D-gravity with Weyl and area-preserving diffeomorphism invariances

    Get PDF
    The constraint structure of 2D-gravity with the Weyl and area-preserving diffeomorphism invariances is analysed in the ADM formulation. It is found that when the area-preserving diffeomorphism constraints are kept, the usual conformal gauge does not exist, whereas there is the possibility to choose the so-called ``quasi-light-cone'' gauge, in which besides the area-preserving diffeomorphism invariance, the reduced Lagrangian also possesses the SL(2,R) residual symmetry. The string-like approach is applied to quantise this model, but a fictitious non-zero central charge in the Virasoro algebra appears. When a set of gauge-independent SL(2,R) current-like fields is introduced instead of the string-like variables, a consistent quantum theory is obtained.Comment: 14 pages, Latex fil

    A Weak Gravity Conjecture for Scalar Field Theories

    Full text link
    We show that the recently proposed weak gravity conjecture\cite{AMNV0601} can be extended to a class of scalar field theories. Taking gravity into account, we find an upper bound on the gravity interaction strength, expressed in terms of scalar coupling parameters. This conjecture is supported by some two-dimensional models and noncommutative field theories.Comment: version published in JHE

    Incommensurate phonon anomaly and the nature of charge density waves in cuprates

    Get PDF
    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wavevectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here we investigate the temperature dependence of the low energy phonons in the canonical CDW ordered cuprate La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}. We discover that the phonon softening wavevector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wavevector to previously reported CDW correlations in non-"214"-type cuprates such as YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of supplementary materia

    Some Low Dimensional Evidence for the Weak Gravity Conjecture

    Full text link
    We discuss a few examples in 2+1 dimensions and 1+1 dimensions supporting a recent conjecture concerning the relation between the Planck scale and the coupling strength of a non-gravitional interaction, unlike those examples in 3+1 dimensions, we do not have to resort to exotic physics such as small black holes. However, the result concerning these low dimensional examples is a direct consequence of the 3+1 dimensional conjecture.Comment: 7 pages, harvma

    The Measure for the Multiverse and the Probability for Inflation

    Full text link
    We investigate the measure problem in the framework of inflationary cosmology. The measure of the history space is constructed and applied to inflation models. Using this measure, it is shown that the probability for the generalized single field slow roll inflation to last for NN e-folds is suppressed by a factor exp(3N)\exp(-3N), and the probability for the generalized nn-field slow roll inflation is suppressed by a much larger factor exp(3nN)\exp(-3nN). Some non-inflationary models such as the cyclic model do not suffer from this difficulty.Comment: 16 page

    On geometric problems related to Brown-York and Liu-Yau quasilocal mass

    Full text link
    We discuss some geometric problems related to the definitions of quasilocal mass proposed by Brown-York \cite{BYmass1} \cite{BYmass2} and Liu-Yau \cite{LY1} \cite{LY2}. Our discussion consists of three parts. In the first part, we propose a new variational problem on compact manifolds with boundary, which is motivated by the study of Brown-York mass. We prove that critical points of this variation problem are exactly static metrics. In the second part, we derive a derivative formula for the Brown-York mass of a smooth family of closed 2 dimensional surfaces evolving in an ambient three dimensional manifold. As an interesting by-product, we are able to write the ADM mass \cite{ADM61} of an asymptotically flat 3-manifold as the sum of the Brown-York mass of a coordinate sphere SrS_r and an integral of the scalar curvature plus a geometrically constructed function Φ(x)\Phi(x) in the asymptotic region outside SrS_r . In the third part, we prove that for any closed, spacelike, 2-surface Σ\Sigma in the Minkowski space R3,1\R^{3,1} for which the Liu-Yau mass is defined, if Σ\Sigma bounds a compact spacelike hypersurface in R3,1\R^{3,1}, then the Liu-Yau mass of Σ\Sigma is strictly positive unless Σ\Sigma lies on a hyperplane. We also show that the examples given by \'{O} Murchadha, Szabados and Tod \cite{MST} are special cases of this result.Comment: 28 page

    Quantum gates implementations in the separated ion-traps by fast laser pulses

    Full text link
    An approach is proposed to implement the universal quantum gates between the ions confined individually in the separated traps. Instead of the typical adiabatic operations, performed for manipulating the ion-ion coupling, here the switchable couplings between ions are implemented non-adiabatically by using the fast laser pulses. Consequently, the desirable quantum gates between the ions could be implemented by using only a series of laser pulses. The proposal may be conveniently generalized to the quantum computation with the scalable ion-traps.Comment: 10 pages, 3figure
    corecore